Tuesday, April 18, 2023
Gamma Functions

The following page includes the definitions of the gamma functions and their relations to each other. These functions were particularly useful in the development of promethium.

Gamma Function

Γ(z)=0tz1etdt\displaystyle \Gamma(z) = \int_{0}^{\infty} t^{z - 1} e^{-t} dt

Incomplete Gamma Function

Lower Incomplete Gamma Function

γ(s,x)=0xts1etdt\displaystyle \gamma(s, x) = \int_{0}^{x} t^{s - 1} e^{-t} dt

Upper Incomplete Gamma Function

Γ(s,x)=xts1etdt\displaystyle \Gamma(s, x) = \int_{x}^{\infty} t^{s - 1} e^{-t} dt

Regularized Incomplete Gamma Function

Regularized Lower Incomplete Gamma Function

P(a,x)=1Γ(a)0xta1etdt\displaystyle P(a, x) = \frac{1}{\Gamma(a)} \int_{0}^{x} t^{a - 1} e^{-t} dt

Regularized Upper Incomplete Gamma Function

Q(a,x)=1Γ(a)xta1etdt\displaystyle Q(a, x) = \frac{1}{\Gamma(a)} \int_{x}^{\infty} t^{a - 1} e^{-t} dt

.

P(a,x)+Q(a,x)=1P(a, x) + Q(a, x) = 1